5
3
OMPUTING

s

PRODUCTIVE §

FMBoo

Connector

Developer’s Guide

950 Boardwalk, Suite 205, San Marcos, CA 92078 « (760) 510-1200 « www.productivecomputing.com

© Copyright 2009 Productive Computing, Inc.

http://www.productivecomputing.com
http://www.productivecomputing.com

Table of Contents

L INTRODUCTION. ...ttt ettt sttt sttt ettt eb e b bt s h e e b b s s a et e s e e e et et ebeeneesesue et e s besuesaenenne 3
L INTEGRATION STEPS.....cuiiiiiiiiiiiiiiiietet ettt sttt sttt s s a e b e e b b st en e a e b sa e en e b saesaen e 4
1) Install & Re@iSter the PIUZ-MMcooiiiiiieieeiee ettt ettt ettt e bt et e e s et e eneenteesee s e eneeneeens 4

2) Install Components and Establish Initial QuickB00Oks CONNECTION.c..eeuiiriieiiniieiiniieii et 5
3) Talking to QUICKBOOKScoviiieiiiieiiieieiteet ettt ettt ettt e ste et e s teesaesteesbesseesseessesseessasseessesseessesssessesssessesssessenssesenns 6
The Request and the Response EXPIained:cccoiiiiriiiiiiiniinc ettt ettt ettt 7

HOW 10 CIeate @ REQUESE:cvieuiiiieiieiieiieteteet ettt ettt ettt ettt sb e bt s b e bt e bt es e e st et et e bt e bt eb e eb e ebteatesb et entenbesbesbeebeeneene 8

HOW t0 POSt the REGUESE:c.euiiiniiitciieteeer ettt ettt ettt ettt b et sb et bttt be et eb et aenaens 10

HOW t0 Parse the RESPONSE:iuiiuiiiiiiiiietiete ettt ettt b bttt s et e st e e es e e b eae et et es e ebeme et e e e st ebene et e e eseebeneeneeenen 11
CUSTOM FIELAS: ...ttt ettt bttt e b ettt e h e bt st et b e e st st et eb et ettt et seene et et aenaens 13

4) HOW TO USE the OSRoiiiiiiiieieeiteeie ettt ettt et estte st e st e esbeestbeesbeeasaeassaeseessseesssaenseessseanseessseanseesssesnseesssesseenes 15
7S] I B o TSRS 15

StEP 2 = USING the OSR ...ttt ettt ettt s bt bt bt e st et et e b e e b e e bt eb e e bt e st es b e b et e besaesbeebeebeeseeneentens 16

StEP 3 = PrOPEI FICIA OTAETeiiiiiiieiieiieieieet ettt ettt sttt ettt et e e e s e besse et e eseeseeseessensensensesseeseeseeseensensensansansensenen 18

UK and AUSIEALAN VEISIONS:ocuiuieiiitiietiiteiieteiet ettt ettt st e ettt s s b es e eb e s e st et e e et e s en e et et eaessene et e e ene et eneeseasene et eneeneeteneeneeenin 19
6) Tutorial Videos and SAMPIE COUE.......c.eiirriirieriieieiieieeteieet et te sttt et st et e ssaeseesaeseensesseensesseensesseensesseensenneen 20

) B 070) Nl X ML 6T 20

l. Intfroduction

Description:

The FM Books Connector plug-in is a powerful tool used to move data between FileMaker® Pro and Intuit
QuickBooks® applications. The Developer’s Guide will explain the necessary integration steps, how the plug-in
“talks' to QuickBooks and the concept of how to create your FileMaker scripts which can be applied to any area
in QuickBooks. Understanding the concept of the script construction and how the data exchange functions will
save a tremendous amount of time and confusion during the plug-in integration process.

Intended Audience:

FileMaker developers or persons, who have knowledge of FileMaker scripting, calculations and relationships as
proper use of the plug-in requires that FileMaker integration scripts be created in your FileMaker solution.

Successful Integration Practices:

1) Read the Developer’s Guide

2) Familiarize yourself with basic accounting practices and QuickBooks

3) Read the Functions Guide

4) Use the OSR (Intuit’s Onscreen Reference Manual)

OSR can be found here: http://developer.intuit.com/gbsdk-current/Common/newOSR/index.html
5) Look at our FileMaker Demo and video tutorials

Demo and video tutorials can be found here: http://www.fmbooksconnector.com

6) Re-read the Developer’s Guide

Error Handling:

Any of the plug-in functions may encounter an error during processing. The function will return the string "!!
ERRORI!!". When an error occurs during processing, immediately call the PCQB_SGetStatus function in order
to obtain a full description of the error. This function returns the message associated with the last error. The
status is used to identify errors in the request or the processing of requests. The text returned by this function
will help troubleshoot script or logic failures.

http://developer.intuit.com/qbsdk-current/Common/newOSR/index.html
http://developer.intuit.com/qbsdk-current/Common/newOSR/index.html
http://www.fmbooksconnector.com
http://www.fmbooksconnector.com

Il. Integration Steps

1) Install & Register the Plug-in

Installing the Plug-in:
The first step is to install the plug-in into FileMaker.

1) Quit FileMaker Pro completely.

2) Locate the plug-in in your download which will be located in a folder called “Plug-in”. On Windows the
plug-in will have a “.fmx"” extension.

3) Copy the actual plug-in and paste it to the Extensions folder which is inside the FileMaker program
folder. On Windows this is normally located here: C:\Program Files\FileMaker\FileMaker X\Extensions.

4) Start FileMaker. Confirm that the plug-in has been successfully installed by navigating to “Preferences”
in FileMaker Pro, then click the “Plug-ins” Tab. There you should see the plug-in listed with a
corresponding check box. This indicates that you have successfully installed the plug-in

Registration:
The next step is to register the plug-in which enables all plug-in functions.

5) Confirm that you have access to the internet and open our FileMaker demo file, which can be found the
in “FileMaker Demo File"” folder in your original download.

6) If you are registering the plug-in in Demo mode, then simply click the “Register the Plug-in” button and
do not change any of the fields. Your plug-in should now be running in "DEMO"” mode. The mode is
noted in the upper right hand corner of our FileMaker Demo file on the Setup tab.

7) 1If you are registering a licensed copy, then simply enter your license number in the “LicenseID” field
and click the “Register the Plug-in” button. Make sure you remove the Demo License ID and enter your
registration information exactly as it appears in your confirmation email. Your plug-in should now be
running in “LIVE” mode. The mode is noted in the upper right hand corner of our FileMaker Demo file
on the Setup tab.

Congratulations! You have now successfully installed and registered the plug-in!

Why do | need to Register?

In an effort to reduce software piracy, Productive Computing, Inc. has implemented a registration process for all
plug-ins. The registration process sends information over the internet to a server managed by Productive
Computing, Inc. The server uses this information to confirm that there is a valid license available and identifies
the machine. If there is a license available, then the plug-receives an acknowledgment from the server and
installs a certificate on the machine. This certificate never expires. If the certificate is ever moved, modified or
deleted, then the client will be required to register again. On Windows this certificate is in the form of a "pci”
file.

The registration process also offers developers the ability to automatically register each client machine behind
the scenes by hard coding the license ID in the PCQB_Register function. This proves beneficial by eliminating
the need to manually enter the registration number on each client machine. There are other various functions
available such as PCQB_GetOperatingMode and PCQB_Version which can assist you when developing an
installation and registration process in your FileMaker solution.

2) Install Components and Establish Initial QuickBooks Connection

After you have installed and registered the plug-in we then need to install two components and establish a
connection with a QuickBooks File.

Installing the QBXMLRP2 file:

This installer is found in the QBXMLRP2 folder. Inside this folder you will find a file called:
“QBXMLRP2Installer.exe”. Please double click this file and run the installer. This file is required for users of all
versions of QuickBooks in order to ensure that all necessary components have been installed.

Installing the Microsoft XML Processor:

Included in the package is a download link for all users of Windows.
Name of link is: “Install MSXML processor update from Microsoft (Required Install)”

This link will direct you to install version 6 of the MSXML Processor from Microsoft. We use version 6 of the
MSXML processor in the plug-in and require that you install this processor. Please save the file to your desktop
and then run the file locally from your machine to ensure proper installation.

Establish Initial Connection with QuickBooks Company File:

First log into that QuickBooks file with "Admin" access. When making a call to QuickBooks via the FM Books
Connector plug-in, you will see a screen similar to the one below. Once this screen appears, select the
appropriate radio button to continue and allow communication with QuickBooks. We recommend selecting the
3rd or 4th radio button as shown below. These settings can be changed later in QuickBooks under the Edit,
Preferences, Integrated Applications Area in Quick Books.

Figure 1.0 - Sample Screen Shot of QuickBooks Certificate

X

An Sppication wthout & certficate & requesting access to the
Followng QuickBocks comparry file:
Consulting Business

mary nchude reading and modfying QuackBooks dats as wel &
n QuickBocks usar interface,

Access
. poth

The Appication Calls tself
FM Books Connector

Cortiicate Ind ormatior

This application does not have a certificate, QuickBooks
cannot verdy the developer's identity,

aackEiooks Sohtxors Markatplace

Search for inf oemation abouk this appbcation ot the
OupckBlonk s Sob tiore: Markatolae

00 you want to slow this applcation to read and modfy ths company file?
ANo

Jfes, prompk each time

*) Nes, whenaver ths QuickBooks company fils & open

Jl¥es, avays; allow access even F QuickBooks is not running

. Allow this apphcation to access personal data such a5 Socl Securty Numbers and
austomer credt card information. Iol e moes

(l Comtinue,.. 2>l Cancel Help

Developer's Guide — FM Books Connector Page 5 of 20

3) Talking to QuickBooks

It is easiest to picture the information exchanged between the plug-in and QuickBooks as a very short
conversation. Actually, this conversation is made simply of a request and a response to that request. That’s it -
a very short and simple conversation. See Figure 2.0 below.

Figure 2.0 — File Maker and QuickBooks Information Exchange

FM Books
Connector

Response

No matter what the request is, whether it is to add contacts to a QuickBooks company file or to find all unpaid
invoices, the conversation always takes the form of a request to do something and a response suitable for the

type of request made.

The following rules also apply:
a) The plug-in always initiates any conversation with a request.

b) QuickBooks always responds to a properly posed request.

¢) The conversation is always finished after QuickBooks responds to the request.

The request and response conversation is the foundation for exchanging information between FileMaker and
QuickBooks. It is imperative to remember that this is the form of the conversation no matter what the plug-in is
requesting of QuickBooks. It will be especially useful to remember this when it comes time to create scripts in
your FileMaker solution for exchanging data with QuickBooks

d) We now know how the plug-in talks to QuickBooks. We know that the conversation is short and to the point.
What we have yet to learn is what is 'said' during this conversation and how it is 'spoken.' We could go in to
the gory details of the language that is used in this conversation, but we created this plug-in specifically so that
the user does not need to know these details. With the plug-in all you need know is how to create a request,
how to post the request to QuickBooks, and how to read QuickBooks's response.

The Request and the Response Explained:

Requests are created and responses are read using external functions. Different requests and responses have
different fields defined for them. Furthermore, requests and responses may have related items.
Please refer to Figure 2.1 for an explanation of the three different elements for both a request and response.

Figure 2.1

Image 2: Request model

Each Reguest contains three elements: a single Message

Message Type ::::;d zsefo or more Fields, and zero or more Related
1 Message Type - Identfies what action is requested of QB
and which class of QB records are to be affected. The
element is set with the PCQB_RqNew(...) function.
Field - The fields of the record contain information about
the request. The field types and the number of fields are
determined by the request Type. These elements are set
with the PCQB_RqAddFieldWithValue(...) function.

Related Record Related Record - Some request Types may allow for
Related Records to be included in the request. Like the

(0-N) request record, each Related Record contains a Type and a

set of Fields. Some related records may also contain their

own Related Record. Each Related Record element is

created with the PCQB_RgAddRelatedRecord(...)

function.

Image 3: Response model

Each Response Record comtains three elements: a single
Message Type, zero or more Fields, and zero or more
Related Records.

Message Type - ldentifies the Type for the Response
Record. Each Record in the Response has the same Type.
The Type for the records in the response are dictated by
the Message Type specified by the preceding Request.

Field - The fields of the record contain information
pertinent to the request. The number of fields and the type
of fields are dictated by the correlating Request. Also, the
number and type can be set by certain Request fields.

Related Record - Some response Types may allow for
Related Records to be included for each Response Record.
Each Related Record In turn contains a Type and a set of
Frelds. Some related records may also contain their own
Related Records.,

*Please come back and reference Figure 2.1 after you have read this document. *

Developer's Guide — FM Books Connector Page 7 of 20

How to Create a Request:

Each request has a certain predefined Message Type. A Message Type for a request has the distinct honor of
telling QuickBooks what the request is aiming to do, and which records are to be affected. In terms that are
more technical, the Message Type defines which class of records we want to work with and which action we
want applied to those records. For instance, the 'CustomerAdd' Message Type tells QuickBooks that the request
wants to create a new Customer record in the QuickBooks file. The available Message Types for a request are
listed in the OSR and are left out of this document for the sake of brevity.

Some sample request Message Types and their definitions follow:

CustomerMod the request wants to modify an existing Customer record in QuickBooks.
InvoiceQuery the request wants to find Invoice records in QuickBooks
SalesOrderAdd the request wants to add a Sales Order record to QuickBooks

A Request also contains fields that further define what the request is to do and which records are to be
affected. The field names available for the different request Message Types are also listed in the OSR.
Two functions are used to create a basic request. They are:

PCQB_RgNew(MessageType)

PCQB_AddFieldWithValue(Fieldname ; Value)
The first function is used to create a request of the desired Message Type, and the second is used to populate

the fields of the request. A simple request to add a Customer follows:

PCQB_RgNew("CustomerAdd")

PCQB_RgAddFieldWithValue("Name" ; "Bob Jones")
PCQB_RgAddFieldWithValue("BillAddress::Addr1" ; "123 Any Street")
PCQB_RgAddFieldWithValue("BillAddress::City" ; "Any Town")
PCQB_RgAddFieldwWithValue("BillAddress::State" ; "Any State")
PCQB_RgAddFieldWithValue("BillAddress::PostalCode " ; "11111")
PCQB_RgAddFieldWithValue("Email" ; "bill@someisp.com")

For some request Message Types, the developer will want to include related records in the request. For
example, when adding an invoice the developer would like to add the line items also. To accomplish this, two
other functions are also used. They are:

PCQB_RgAddRelatedRecord(ElementName)
PCQB_RqCloseRelatedRecord

A sample InvoiceAdd request demonstrates the usage of these two functions.

PCQB_RgNew("InvoiceAdd")

PCQB_RgAddFieldWithValue("CustomerRef::FullName" ; "Bob Jones")
PCQB_RgAddFieldWithValue("TxnDate" ; "2006/01/01")
PCQB_RgAddFieldWithValue("RefNumber" ; "123456789")
PCQB_RgAddFieldWithValue("BillAddress::Addr1" ; "123 Any Street")
PCQB_RgAddFieldWithValue("BillAddress::City" ; "Any Town")
PCQB_RgAddFieldWithValue("BillAddress::State" ; "Any State")
PCQB_RgAddFieldWithValue("BillAddress::PostalCode " ; "11111")
PCQB_RgAddRelatedRecord("InvoiceLineAdd")
PCQB_RgAddFieldWithValue("ItemRef::FullName" ; "Widgit")
PCQB_RgAddFieldWithValue("Quantity" ; "20")
PCQB_RgAddFieldWithValue("Amount" ; "79.95")
PCQB_RqCloseRelatedRecord

PCQB_RgAddRelatedRecord("InvoicelLineAdd")
PCQB_RgAddFieldWithValue("ItemRef::FullName" ; "Gadget")
PCQB_RgAddFieldWithValue("Quantity" ; "3")
PCQB_RgAddFieldWithValue("Amount" ; "2.95")
PCQB_RqCloseReleatedRecord

You will notice that the PCQB_RgAddFieldWithValue function operates in the context of the current record.
When the PCQB_RgAddRelatedRecord function is called the context shifts from the parent record (the main
request) to the related record, in this case the InvoicelLineAdd record. Subsequent calls to
PCQB_RgAddFieldWithValue will add field values to the related record until the PCQB_RqCloseRelatedRecord
function is called and the context is shifted back to the parent record. Another important note to make is that
the fields of a request must be set in a specific order. The order to set the fields is listed in the OSR. It is also
important to note that the PCQB_RgAddReleatedRecord must also be called in a specific order. Again, this order
is listed in the OSR. Later in this document we will discuss how to use the OSR.

How to Post the Request:

Now that we know how to create a request, we need to learn how to post the request to QuickBooks. This is a
rather simple operation that requires only a single execute function. However this is the perfect time to explain
two other functions that the execute function relies upon. The three functions are:

PCQB_BeginSession(CompanyFile ; ShareMode)
PCQB_Execute
PCQB_EndSession

PCQB_BeginSession is used to establish a session with QuickBooks. This function must be returned successfully
before we can post a request to QuickBooks. It may be called anytime during the script, but since it may block
other applications from accessing the QuickBooks file it is proper etiquette to call it immediately before
executing a request and then calling PCQB_EndSession immediately after executing. This minimizes the
possibility of blocking other applications from accessing the file while you script builds requests or processes
responses.

The following table lists the effects of the mode in different operating environments:

Who started QuickBooks [Selected Mode Who else may obtain access

FM Books Connector "Single” No one else
QuickBooks user on same machine = no access
FM Books Connector *Multi” All other integrated applications = access

QuickBooks users on other machines = access

QuickBooks user already logged in
Only one integrated application = access

QuickBooks users = access
Integrated applications = access

QuickBooks User "Single”

QuickBooks User "“Multi”

How to Parse the Response:

Once a request is built and successfully executed, the plug-in will retain the response in memory. Depending on
the type of request that is made the response may contain one or several records. For instance, after executing
a request to add a customer (using a request of Message Type 'CustomerAdd') QuickBooks will respond with a
'CustomerRet' record that the plug-in will hold in memory. Query requests such as an ‘InvoiceQuery’ request
may return several records in the response. Each of the records is accessed and parsed for the information
they contain.

Accessing and parsing the records contained in the response is a rather simple process.

Six functions are used to read the contents of a response:

PCQB_RsOpenFirstRecord
PCQB_RsOpenNextRecord
PCQB_RsOpenFirstRelatedRecord(ElementName)
PCQB_RsOpenNextRelatedRecord
PCQB_RsCloseRelatedRecord
PCQB_RsGetFieldValue(Name)

The first two functions are used to iterate through all the records in the response. PCQB_RsOpenFirstRecord
opens the first record in the response and PCQB_RsOpenNextRecord is used to open successive records in the
response. PCQB_RsOpenNextRecord will return "End" when there are no more records to be read in the
response.

Once a record is opened with either of the open record functions the user is able to read the record contents
using the PCQB_RsGetFieldValue(Name) function. The name of the desired field is passed with the function
and the contents of the field are returned. See the “"OSR” for acceptable field names.

As with a request there may be related records to each record in the response. These related records are
accessed with the PCQB_RsOpenFirstReleatedRecord(ElementName) and PCQB_RsOpenNextRelatedRecord
functions. Once the related record is opened, its contents can be read with the PCQB_RsGetFieldValue function.

An example of reading a response to an 'InvoiceQuery' request follows:

#0Open the First record in the response
SetField[someField ; PCQB_RsOpenFirstRecord]
Loop
#EXxit the loop on error or after last record is read
Exit Loop If [(someField < 0) or (someField = "End")]
Get the name of the Customer and the Accounts Receivable
SetField [someField ; PCQB_RsGetFieldValue("CustomerRef::FullName")]
SetField [someField ; PCQB_RsGetFieldValue("ARAccountRef::FullName")]
Get any and all related transactions to the current invoice
SetField [someField ; PCQB_RsOpenFirstRelatedRecord("LinkedTxn")]
Loop
Exit Loop If [(someField < 0) or (someField = "End")]
#Gets the information from the related transaction
SetField [someField ; PCQB_RsGetFieldValue("RefNumber")]
SetField [someField ; PCQB_RsGetFieldValue("Amount")]
#0pens the next related transaction
SetField [someField ; PCQB_RsOpenNextRelatedRecord]
End Loop
#Close the related record to return to the main record
SetField [someField ; PCQB_RsCloseRelatedRecord]
#0Opens the invoice line item related records
SetField [someField ; PCQB_RsOpenFirstRelatedRecord("InvoicelLineRet")
Loop
Exit Loop If [(someField < 0) or (someField = "End")]
#Gets the information from the line item
SetField [someField ; PCQB_RsGetFieldValue("ItemRef::FullName")]
SetField [someField ; PCQB_RsGetFieldValue("Amount")]
#0pens the next line item
SetField [someField ; PCQB_RsOpenNextRelatedRecord]
End Loop
#Close the related record to return to the main record
SetField [someField ; PCQB_RsCloseRelatedRecord]
#Open the next record in the response
SetField [someField ; PCQB_RsOpenNextRecord]
End Loop

Custom Fields:

Custom field are accessed using DataExt objects. Each custom field is a DataExt object as the QBSDK uses a
DataExt object for custom fields. If a QB object (invoice, customer, etc) supports custom fields then the list of
available fields in the Response for the object will contain a DataExtRet object. Accessing the DataExtRet object
in a response is the same as accessing any other related record of the response. Setting values for DataExt
objects is accomplished with DataExtMod requests. One must be familiar with creating requests using the OSR
to successfully modify DataExt objects.

This DataExt object is available in the following QBs lists:

Accounts
Customers
Vendors
Items
OtherNames
Employees

The DataExt object is also available in the following transaction types:

ARRefundCreditCard
Bill

BillPaymentCheck
BillPaymentCreditCard
BuildAssembly
Charge

Check
CreditCardCharge
CreditCardCredit
CreditMemo

Deposit

Estimate
InventoryAdjustment
Invoice, ItemReceipt
JournalEntry
PurchaseOrder
ReceivePayment
SalesOrder
SalesReceipt
SalesTaxPaymentCheck
VendorCredit

Adding values to a custom field is not very well defined in the QBSDK, therefore it is difficult to explain how to
use them with our plug-in. In some cases the custom field is populated with a separate request and in other
cases it is populated with the parent item request. For instance when adding/modifying Customer in
QuickBooks with the plug-in the DataExt aggregate is not available in the CustomerAdd nor CustomerMod
request. But in the InvoiceAdd request a DataExt aggregate is available for each line item in the invoice. This
inconsistency makes accessing custom fields difficult at best.

The most consistent way to add/mod/del the contents of a custom field is to use the DataExtAdd, DataExtMod,
and DataExtDel requests. These requests can be found in the "OSR".

Retrieving the contents of a custom field requires querying for the parent object and including the OwnerID field
in the query, which is normally one of the last fields to be added to the request. Obtaining the DataExt values
in the Response to a query objects (contacts, invoices,etc...) requires that the request contain the following
PCQB_RgAddFieldWithValue("OwnerID" ; "0").

The above function adds the OwnerlID field to the request, and populates it with a ‘0". This causes QuickBooks
to return the public data extensions (custom fields) with the response. (Advanced users can cause QuickBooks
to return private data extensions by passing the GUID instead of '0’, but this is only for advanced users).

When QuickBooks returns the DataExt (custom fields) in the response, the plug-in user can access the
information in the data extension. The following script demonstrates accessing the custom fields in a response:

If [0 = PCQB_RsOpenFirstRelatedRecord("DataExtRet")]

Loop
#the name of the custom field
Set Field[N_Field ; PCQB_RsGetFirstFieldValue("DateExtName")]
#the value of the custom field
Set Field[D_Field ; PCQB_RsGetFirstFieldValue("DataExtValue")]
#get next custom field/exit if there are no more
Exit Loop If[0 <> PCQB_RsOpenNextRelatedRecord]

End Loop

Set Field[SomeField ; PCQB_RsCloseRelatedRecord] End If ...

Since custom fields are more advanced and can be quite complex, we are available for hire to assist with this
development.

4) How To Use the OSR

Now that you thoroughly understand how FileMaker and QuickBooks “talk” to each other by making requests
and responses, we are ready to introduce Intuit's OSR (Onscreen Reference Manual). The OSR contains a
complete list of all available fields/filters, detailed descriptions of the request types, errors and specifies field
order. This will be crucial during your development.

The OSR can be found at the following link:

http://developer.intuit.com/gbsdk-current/Common/newOSR/index.html

Step 1 - Set Up

First use the control panel on the left to select the proper settings.

- The SDK Version should be set to 7.0 when using QBs 2008 or QBs v8. If using QBs 2007 or v7 then the SDK
should be set to 6.0. If using QBs 2006 or v6 then the SDK should be set to 5.0. The formula is typically the
QBs version minus 1.

- The Format will need to be changed to gbXML. The format should ALWAYS be set to gbXML.

- The QB Editions specify what international version of QBs you are using. If you are using the US edition then
select “"US". If you are using the Canadian or UK edition, then please select “Allow CA and UK" and select the
appropriate edition. For the Australian version select UK.

For example, in figure 5.0 below the SDK Version is 7.0, the format is gbXML and the US edition of QuickBooks
has been selected.

Figure 5.0

Rt-click fields to see QB U

http://developer.intuit.com/qbsdk-current/Common/newOSR/index.html
http://developer.intuit.com/qbsdk-current/Common/newOSR/index.html

Step 2 - Using the OSR

You will only be working with the Request and Response Tabs as shown below in Figure 5.1.
All other tabs can be ignored.

Figure 5.1

XMLOps Cc= VB.NET Related Info

-

9 Type Max (DT) Max (OE) Img

V)]

=l InvoiceAddRq

Since you already understand what Requests and Responses are, select the appropriate tab to begin. After
specifying the Response or Request tab, then you will select a Message. The Message defines which class of
records we want to work with and which action we want applied to those records. In our example in Figure 5.2
we will select the Message called “InvoiceAdd” in order to add an Invoice to QuickBooks. The “InvoiceAdd”
Message tells QuickBooks that the request wants to create a new Invoice record in the QuickBooks file.

Figure 5.2

EstimateAdd

EstimateMod(3.0

EstimateQuery
GeneralDetallReportQuery(2.0
GeneralSummaryRepontQuery(2.0;
HostQuery
InventoryAdjustmentAdd(2.0)
InventoryAdjustmemQuery(2.0)

Clinvoceads >, =

InvoiceMod(2.1)

InvesceQuery
[temAssembliesCanBuddQuery(S5.0

IteamMicrnuntddd

Developer's Guide — FM Books Connector Page 16 of 20

You will now be looking at a screen with columns titled Tag, Type, Max (DT), Max (OE), Implementation and
Occurrences. Let's have a closer look at what these columns mean in Figure 5.3.

Figure 5.3

v 27 3¢ 144 151 154

IDTYFE

[OTYPE

[DTYFE

1. Tag = name of the element or field and the value that you put into the function

For example, PCQB_RgAddFieldWithValue("CustomerRef::FullName" ; "Bob Jones")

Please left click on the element name to obtain a detailed description as shown in Figure 5.4 below.

Some element names will also allow you to right click and obtain a corresponding QBs field mapping image.

Figure 5.4

2. Type = type of data that goes into this field
3. Max (DT) = number of allowable characters in the field for desktop versions
4. Max (OE) = number of allowable characters in the field for online versions and currently not applicable

5. Implementation = Required SDK version indicated by each country’s flag. If a number accompanies the flag
such as 3.0 as shown above, then that is the minimum version of the SDK that is required for that field.

6. Occurrences = 1 implies a required field, 0-1 implies an optional field, and
0-n implies that a record is not required or that multiple records can be used (or 0-many)

Step 3 - Proper Field Order

The proper field order is crucial. If one required field is missing or one filed is out of order, then you will
encounter errors. The field order is specified from top to bottom in the OSR and must be referenced in the
script in that exact order. For Example, in Figure 5.5 when adding an invoice to QuickBooks we must specify the
proper field order which is determined by the OSR as shown below.

Figure 5.5 - Sample script showing field order taken directly from the OSR
PCQB_RgAddFieldWithValue("CustomerRef::FullName" ; "Bob Jones")
PCQB_RgAddFieldWithValue("TxnDate" ; "2006/01/01")
PCQB_RgAddFieldWithValue("RefNumber" ; "123456789")
PCQB_RgAddFieldWithValue("BillAddress::Addr1" ; "123 Any Street")
PCQB_RgAddFieldWithValue("BillAddress::City" ; "Any Town")
PCQB_RgAddFieldWithValue("BillAddress::State" ; "Any State")

Developer's Guide — FM Books Connector Page 18 of 20

5) Tips

Tax Tips:

Tax varies depends on the version of QuickBooks you are using and requires knowledge of how QuickBooks
handles tax. Since we do not provide QuickBooks training, we assume that you already have knowledge of how
your QuickBooks file handles tax. For example, when using the Canadian version of QuickBooks you will
probably want to turn off Sales Tax. When using the US version sales tax will be applicable and should be
turned on.

Here are some helpful hints when using the US versions:

- The tax rate is pre-entered in QuickBooks. However you can modify the tax rate from FM to QBs.

- The tax rate is set up at invoice level and not the line item level.

- An item must be specified as taxable or non-taxable. This is set up at the line item level for an invoice or at
the item level. It is synonymous.

- If you do not specify the tax rate in QBs, then the QBs file default will be applied.

Canadian Versions:

When using the Canadian version please make these two very important changes.

- Change "State” to “Province”
- Remove or adjust any reference to Sales Tax

UK and Australian Versions:

The Australian versions adhere to the UK version requirements when being referenced throughout our
documentation and examples.

6) Tutorial Videos and Sample Code

1) Overview - Installing the plug-in / Connecting to QuickBooks for the 1%t Time

Video Tutorial: http://www.fmbooksconnector.com/videos/Overview/Overview.php?ID=83

2) Push a Customer from FileMaker Pro to QuickBooks

Video Tutorial: http://www.fmbooksconnector.com/videos/AddCustomer/AddCustomer.php?ID=83
Sample Code: http://www.fmbooksconnector.com/downloads/PushCustomer.pdf

3) Push an Invoice from FileMaker to QuickBooks:

Video Tutorial: http://www.fmbooksconnector.com/videos/AddInvoice/AddInvoice.php?ID=83

Sample Code: http://www.fmbooksconnector.com/downloads/PushInvoice.pdf

4) Pull a Customer Balance from QuickBooks into FileMaker
Video Tutorial: http://www.fmbooksconnector.com/videos/PullBalance/PullBalance.php?ID=83
Sample Code: http://www.fmbooksconnector.com/downloads/PullCustomerBalance.pdf

5) Pull an Invoice Balance from QuickBooks into FileMaker

Sample Code: http://www.fmbooksconnector.com/downloads/PullInvoiceBalance.pdf

lll. Contact Us

Successful integration of our products within your own system requires a working knowledge of FileMaker,
especially in the areas of scripting and calculations. If you need additional support for scripting, customization
or setup, then you can contact us via the avenues listed below.

Phone: 760-510-1200
Email: support@productivecomputing.com

Forum: www.productivecomputing.com/forum

However please note that assisting you with implementing this plug-in (excluding registration) is billable at our
standard rate. We bill on a time and materials basis so you are only billed for the time it takes to assist you.
If you are not a FileMaker Developer or are just too busy to create the integration scripts, then please contact
us. We will be happy to provide you with a free estimate to create your integration scripts.

We are ready to assist and look forward to hearing from you!

Developer's Guide — FM Books Connector Page 20 of 20

http://www.fmbooksconnector.com/videos/Overview/Overview.php
http://www.fmbooksconnector.com/videos/Overview/Overview.php
http://www.fmbooksconnector.com/videos/AddCustomer/AddCustomer.php
http://www.fmbooksconnector.com/videos/AddCustomer/AddCustomer.php
http://www.fmbooksconnector.com/downloads/PushCustomer.pdf
http://www.fmbooksconnector.com/downloads/PushCustomer.pdf
http://www.fmbooksconnector.com/videos/AddInvoice/AddInvoice.php
http://www.fmbooksconnector.com/videos/AddInvoice/AddInvoice.php
http://www.fmbooksconnector.com/downloads/PushInvoice.pdf
http://www.fmbooksconnector.com/downloads/PushInvoice.pdf
http://www.fmbooksconnector.com/videos/PullBalance/PullBalance.php
http://www.fmbooksconnector.com/videos/PullBalance/PullBalance.php
http://www.fmbooksconnector.com/downloads/PullCustomerBalance.pdf
http://www.fmbooksconnector.com/downloads/PullCustomerBalance.pdf
http://www.fmbooksconnector.com/downloads/PullInvoiceBalance.pdf
http://www.fmbooksconnector.com/downloads/PullInvoiceBalance.pdf
mailto:support@productivecomputing.com
mailto:support@productivecomputing.com
http://www.productivecomputing.com/forum
http://www.productivecomputing.com/forum

	Table of Contents
	I. Introduction
	II. Integration Steps
	1) Install and Register Plug-in
	2) Installers and Initial QuickBooks Connection
	3) Talking with QuickBooks
	Request and Response Explained
	Create the Request
	Post the Request
	Parse the Response
	Custom Fields

	4) How to Use the OSR
	Step 1 - Set Up
	Step 2 - Using the OSR
	Step 3 - Proper Field Order

	5) Tips
	6) Videos and Sample Code

	III. Contact Us

